

Durée: 3.h

Exercice N°1: (3 pts) (20 mn)

Chaque question ci-dessous comporte trois réponses possibles. Pour chacune de ces questions, une seule des réponses proposées est exacte. On demande de choisir cette réponse.

L'espace rapporté à un repère orthonormé direct (O, i, j, k)

1/ Soit Δ une droite dont une représentation paramétrique est $\begin{cases} x = \alpha \\ y = \alpha \end{cases}; \alpha \in \square$ $z = \alpha$

a)
$$d(O, \Delta) = 0$$

b)
$$d(O, \Delta) = \sqrt{3}$$

c)
$$d(O, \Delta) = 3$$

2/ L'aire d'un parallélogramme ABCD est égale à

a)
$$\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$$

b)
$$\|\overrightarrow{AC} \wedge \overrightarrow{DB}\|$$

c)
$$\overrightarrow{AB}.\overrightarrow{AD}$$

3/P et Q deux plans sécant suivant une droite Δ , si \overrightarrow{n}_p est un vecteur normale de P et \overrightarrow{n}_Q est un vecteur normale de Q alors un vecteur directeur de Δ est :

a)
$$\overrightarrow{n_P} + \overrightarrow{n_Q}$$

b)
$$\overrightarrow{n_p} - \overrightarrow{n_Q}$$

c)
$$\overrightarrow{n_P} \wedge \overrightarrow{n_Q}$$

4/ On donne A(0,6,0) et B(6,0,0). Une équation du plan médiateur du segment [AB] est :

a)
$$x - y + 1 = 0$$

b)
$$x+y+z-6=0$$

$$c) x-y=0$$

Exercice N°2: (3pts) (30 mn)

On considère la suite U définie sur \square par : $\begin{cases} U_0 = 1 \\ U_{n+1} = e^2 \sqrt{U_n} \end{cases}$

1/ Calculer U₁ et U₂

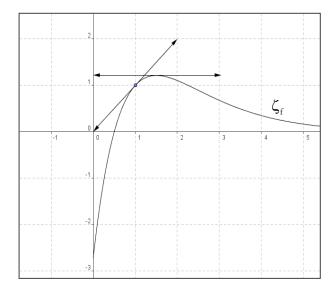
2/ Soit la suite définie sur $\square\,$ par $V_{_n}$ = ln($U_{_n}$) – 4 .

- a) Montrer que (V_n) est une suite géométrique de raison $q = \frac{1}{2}$ dont on déterminera le premier terme.
- b) Exprimer V_n en fonction de n. En déduire U_n en fonction de n.
- c) Calculer la limite de U_n

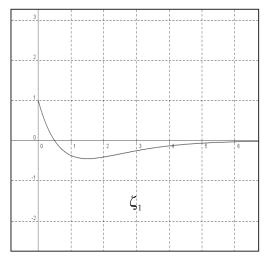
Exercice N°3 (3pts) (30 mn)

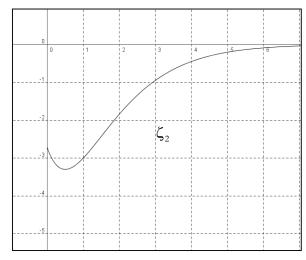
On donne ci-dessous la courbe ζ_f d'une fonction f définie sur $\left[0,+\infty\right[$

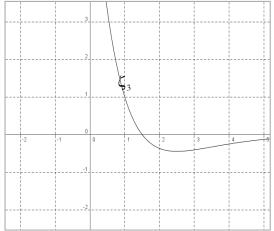
et ses tangentes au points d'abscisses 1 et $\frac{3}{2}$



- 1/ Lire graphiquement f(1), f'(1) et $f'(\frac{3}{2})$
- 2/ On admet que $f(x) = (ax + b)e^{-x+1}$
 - a) Calculer f'(x) en fonction de a et b
 - b) Déduire l'expression de f
- 3/ Parmi les trois courbes ζ_1, ζ_2 et ζ_3 Préciser celle de f'(x) fonction dérivée de f et celle de F une primitive de f







Exercice N°4 (6 pts) (50 mn)

L'espace rapporté à un repère orthonormé direct $(O, \vec{i}, \vec{j}, \vec{k})$

On donne les points A(1,1,-2); B(1,2,-2) et C(0,1,1)

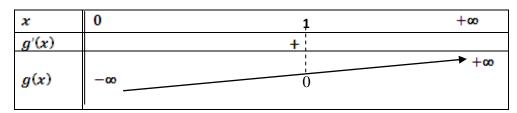
- 1/a) Montrer que les points A,B et C définissent un plan P
 - b) Vérifier qu'une équation du plan P est : 3x-z-1=0
- 2/Soit le point D(-2,1,3)

Montrer que ABCD est tétraèdre puis calculer son volume

- 3/a) Donner une équation cartésienne du plan Q passant par A et perpendiculaire à (AC)
 - b) Montrer que P et Q sont perpendiculaires suivant (AB)
- 4/ Soit S_m l'ensemble des points M(x,y,z) tel que : $x^2+y^2+z^2-2x-2my+4z+4=0$; $m\in\square$
- a) Montrer que pour tout réel m , S_m est une sphère dont on précisera le centre I_m et le rayon R_m
- b) Montrer que I_m décrit la droite (AB) lorsque m varie dans \square
- c) Déterminer l'intersection de S_m avec le plan P

Exercice N°5 (5 pts) (50 mn)

- Soit la fonction g définie sur $]0,+\infty[$ par $g(x)=x^2-1+\ln(x)$ I-
- 1/ Justifier les résultats du tableau de variation de g



- 2/ Déduire le signe de g(x)
- II- Soit f la fonction définie sur $]0,+\infty[$ par $f(x) = x \frac{\ln(x)}{x}$
- 1/a) Vérifier que pour tout x de]0,+ ∞ [on a f'(x) = $\frac{g(x)}{x^2}$
 - b) Dresser le tableau de variation de f
- 2/a) Montrer que la droite Δ d'équation y = x est une asymptote à ζ_f
 - b) Etudier les positions relatives de ζ_f et Δ
- 3/ Compléter $\zeta_{\scriptscriptstyle f}$ et Δ sur la feuille annexe
- 4/Soit h la restriction de f sur [0,1]
 - a) Montrer que h réalise une bijection de]0,1] sur $[1,+\infty[$
 - b) Construire $\zeta_{h^{-1}}$ la courbe de la fonction réciproque de h dans le même repère que ζ_f
- 5/ Déterminer la primitive F de f sur $]0,+\infty[$ qui s'annule en 1.

ANNEXE à rendre avec la copie d'examen

